
Knowledge and Information Systems manuscript No.
(will be inserted by the editor)

Local bilateral clustering for identifying research

topics and groups from bibliographical data

Sara Elena Garza Villarreal · Satu Elisa

Schaeffer

Received: Jun 18, 2014 / Revised: May 13, 2015 / Accepted: Jul 27, 2015

Abstract The structure of scientific collaboration networks provides insight
on the relationships between people and disciplines. In this paper, we study
a bipartite graph connecting authors to publications and extract from it clus-
ters of authors and articles, interpreting the author clusters as research groups
and the article clusters as research topics. Visualisations are proposed to ease
the interpretation of such clusters in terms of discovering leaders, the activ-
ity level, and other semantic aspects. We discuss the process of obtaining and
preprocessing the information from scientific publications, the formulation and
implementation of the clustering algorithm, and the creation of the visualisa-
tions. Experiments on a test data set are presented, using an initial prototype
implementation of the proposed modules.

Keywords Clustering · Knowledge discovery · Collaboration networks ·
Network analysis

1 Introduction

The structure of scientific collaboration networks provides information on the
relationships between people and disciplines. Extracting clusters (also known
as communities) from such networks helps to discover which researchers work
together and on what topics. This information serves for the identification of
human or knowledge resources and the establishment of new collaborations
— between research groups, with the industry, or graduate students seeking a
thesis adviser, for example.

Sara Elena Garza Villarreal
FIME, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico

Satu Elisa Schaeffer
FIME, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, NL, Mexico
E-mail: elisa.schaeffer@uanl.edu.mx

2 S.E. Garza, S.E. Schaeffer

Scientific collaboration networks are generally represented as bipartite graphs
that connect researchers to publications. This representation allows to detect
both research groups (author clusters) and topics (article clusters). Our pro-
posed method is based on local graph clustering [45] and community search
[46]; it includes an asymmetrical mode that strengthens or weakens connec-
tions according to whether vertices are found together on the same or different
clusters. The goal is to improve cohesion by the the gradual refinement of the
resulting clusters. The interpretation of the clusters (e.g. leader discovery, topic
activity rating) is facilitated through our visualisation framework based on tag
clouds and spring layout. Our contributions include a preprocessor to detect
duplicate authors, a similarity metric for generating edge weights, a clustering
algorithm (using an objective function and a local search procedure derived
from our previous work, operating in a novel manner, taking turns on each
side of a bipartite graph), and a categorisation for cluster topologies.

The rest of this paper is organised as follows: Section 2 provides the foun-
dations and Section 3 discusses related work. Then, Section 4 describes the
proposed solution and Section 5 presents experiments and results. Finally,
Section 6 provides conclusions and future work.

2 Background

In this section we discuss the fundamental definitions of the present work,
which include graph theory and collaboration networks. The standard mathe-
matical model for any network formed by elements and their interconnections
is a graph. For a textbook on graph theory, we recommend that of Diestel [10],
which is also available on-line. A graph is a pair of sets, G = (V,E), where
the elements of V = {v1, v2, . . . , vn} are called vertices and the elements of
E are, typically, pairs of distinct vertices (v, w) and are referred to as edges.
Should larger subsets be considered edges as well, the term hypergraph is used.
If the edges are assigned weights, the graph is weighted. If the edges are not
bidirectional, that is (u, v) ∈ E does not necessary imply that also (v, u) ∈ E,
the graph is said to be directed. If at most one edge may connect each pair of
vertices, the graph is simple (it is otherwise a multigraph). The vertices that
form an edge are said to be adjacent to each other and incident to the edge.
Two vertices v and w are said to be neighbours if they are connected by an edge
(v, w) ∈ E. The neighbourhood of a vertex v is the set of its neighbours and
is denoted by Γ (v). The degree of a vertex v is the number of edges incident
to it, which in a simple undirected graph equals the number of neighbours,
deg(v) = |Γ (v)|. A vertex with no adjacent vertices is said to be isolated and
has degree zero. A vertex with an unusually high degree is a hub.

The order of the graph is the cardinality of its vertex set, n = |V |, and its
size is the number of edges in it, m = |E|. A graph H = (W,F) is a subgraph

of G = (V,E) if and only if W ⊆ V and

F ⊆ {(u, v) | u, v ∈ W ∧ (u, v) ∈ E}. (1)

Local bilateral clustering for bibliographies 3

A subgraph induced by a set S ⊆ V is a subgraph H = (S, FS) where

FS = {(u, v) | u, v ∈ S ∧ (u, v) ∈ E}, (2)

that is, the subgraph where all edges between vertices in S that were present
in E are conserved. In a general subgraph (Eq. (1)), some or all of these edges
could be excluded. The density of (a simple graph) G is the proportion of
edges present in it, comparing with the theoretical maximum: δ = m/mmax.
For a directed graph, this maximum is mdir

max = n(n− 1): each vertex connects
to every other vertex, supposing that edges only connect distinct vertices. For
an undirected graph, it is half of that, as each pair is included just once:

mundir

max =
n(n− 1)

2
=

(

n

2

)

. (3)

An induced subgraph with density that is maximal (that is, no further vertices
can be included without losing the property of density being equal to one) is
called a clique. A graph that has density one is called complete.

A partition of a graph is a subdivision of its vertices into two or more
subsets S1, . . . , Sk such that

⋃k

i=1
Si = V and Si ∩ Sj = ∅ for i 6= j. A cover

is also a collection of subsets that includes every element of V in at least
one subset, but without the requirement of empty intersections between the
subsets. A graph is k-partite if a partition to k subsets exists such that

(u, v) ∈ E ⇒ u ∈ Si ∧ v ∈ Sj , i 6= j, (4)

that is, all edges connect vertices from distinct subsets and there are no edges
connecting vertices within the same subset. A 2-partite graph is said to be
bipartite. A cut is a 2-partition to two non-empty subsets.

A path from v to w in G is a sequence of edges such that v is the source
vertex of the first edge, w is the target vertex of the last edge, and the ith
edge ends in the same vertex that the (i+ 1)th vertex begins; this also holds
for undirected graphs, where either vertex may be considered the source or
the target arbitrarily. A path from a vertex to itself is the empty set. If there
exists at least one path from each vertex v to every other vertex in V , the
graph is connected. The distance dv,w from v to w is the number of edges in
the shortest path that connect them in G.

2.1 Collaboration networks

Collaboration networks are complex networks [12, 38] that represent common
participations among social entities, e.g. films involving different actors or pub-
lications involving different researchers. A subtype of this kind of network is a
scientific collaboration network, in which entities and connections are specifi-
cally related to scientific research. A collaboration network is represented by a
bipartite graph where one subset of vertices stands for the collaborators or ex-
ecutors (researchers) and the other subset stands for the acts of collaboration

4 S.E. Garza, S.E. Schaeffer

(publications); the edges of the graph, thus, connect the collaboration acts
with their corresponding executors. From the bipartite graph, two additional
graphs or projections can be derived. A projection has no longer two subsets
of vertices, but only one, which is connected through the other (see Fig. 1).
Formally, denote one of the vertex subsets by S and the other by T = V \ S.
We now define a similarity measure over the vertices in S based on the vertices
in T ; the construction also works interchanging the roles of the sets S and T .
Let v, w ∈ S. We employ the Jaccard similarity for the neighbourhoods1 of v
and w in T

ξ(v, w) = |Γ (v) ∩ Γ (w)| / |Γ (v) ∪ Γ (w)|, (5)

that is, the fraction of neighbours that v and w share in T . Other natural
alternatives include using |Γ (v)|+ |Γ (w)| in the denominator. Should there be
edge weights or multiplicities, the definition of similarity can be adjusted if the
range of these values is finite. Using the above similarity measure, we derive
from G two graphs: a projection of G onto S, GS = (S,ES), and a projection
of G onto T , GT = (T,ET), where

EK = {(u, v) ∈ E | u ∈ K, v ∈ K, ξ(u, v) > τ}, (6)

for K ∈ {S, T} and a threshold parameter τ ≥ 0 (note that τ = 0 conserves all
edges, whereas high values for this parameter create a sparser graph by only
keeping “strong” edges). One may conserve the values ξ(u, v) or some trans-
formation of them as edge weights in GK . An example using edge weights is
given in Fig. 2. If the collaborations can occur between groups of more than
two actors (an actor being used here as a synonym for executor), a hypergraph
is a natural representation for the projected actor network. However, typically
the hyperedges are transformed into cliques connecting the participants of the
collaboration each with the others; information is lost when several collabora-
tions overlap (cf. Fig. 1 on the right).

For scientific collaboration networks, the two derived projections corre-
spond to authors and publications ; while the former projection — commonly
called “co-authorship network” — connects researchers through paper co-
authorships, the latter connects publications through common authors. Several
variants of edge weights have been used in literature to portray aspects such
as communication or co-authorship frequency [3, 11, 23, 26].

Complex networks in general are characterised in terms of structural mea-
sures, that is, functions that assign a numerical value which permits to identify
the structural properties of the system [14]. In scientific collaboration net-
works, for example, distances between scientists are short, paths in the author
projection usually contain the same individuals [32, 36], there is transitivity in
acquaintances [35], and scientists with a high number of collaborations have a
higher probability of participating in new collaborations [7, 8, 20, 30, 34, 52];
these structural properties are respectively known as the small-world effect,
high clustering, and preferential attachment [38].

1 As the graph is bipartite, necessarily Γ (v) ⊆ T as well as Γ (w) ⊆ T .

Local bilateral clustering for bibliographies 5

C

e

b

c

a

d

A

B

a
b

c
d

e

a

b

ed
c

Fig. 1: On the left, a bipartite graph representing three acts of collaboration
realised among five actors (a total of eight vertices), V = {a, b, c, d, e, A,B,C}.
The collaborators (a, b, c, d, e) are drawn on the left and collaborations
(A,B,C) on the right. The same set of collaborations is portrayed in the
hypergraph in the middle that represents three collaborations, E = {(a, b, c),
(b, c, d), (a, d, e)}, carried out among five collaborators, V = {a, b, c, d, e}; each
edge is encompassed in a dashed line. On the right, these collaborations are
represented as a clique in a simple, unweighted graph; edge weights could be
used to preserve frequencies of collaboration (b and c collaborated twice).

e

1

1

2

1

2

1

3

e

b

c

a

d

A

B

C

1

2

1

3 1

2

A

B

C

1

5

1

2

d

b

a

c

Fig. 2: The bipartite graph on the left gives rise to two weighted graphs on
the centre and on the right, as defined by Eq. (5) and Eq. (6) with τ = 0.

Another essential structural property in networks is the presence of commu-
nities or clusters, i.e. groups of vertices whose members have many (or denser)
edges among themselves and only a few (or sparser) edges with respect to
other elements in the network [15, 42]. Algorithms for community detection or
graph clustering (the terms being largely interchangeable) extract such groups
in a variety of ways [16, 44], for instance using modularity [37]. In scientific
collaboration networks, graph clustering allows to detect research groups and
topics. Section 3 discusses work related to the detection of these groups based
on bibliographical data.

3 Related work

In this section we discuss briefly similar methods and applications presented
in the literature for identifying clusters in collaboration networks and/or doc-
ument collections. Newman [33] was one of the first to report findings on
the structure of collaboration networks on the new wave of network science

6 S.E. Garza, S.E. Schaeffer

that began with the new millennium. He discusses the extraction of such net-
works [31] as well as some of the relevant structural properties [32]. He mostly
studies the network created by considering co-authorships in bibliographical
databases, focusing solely on the author side of our bipartite formulation.
This was to our knowledge the first published study on the structure of co-
authorship networks based on automated processing of bibliographical data.
The essential of the structural measures evaluated, namely publications per
author and number of coauthors, behave as a power-law with an exponential
cutoff; the analysis also confirms the six degrees of separation of Milgram [28]
as well as a high clustering coefficient in some research areas.

ArnetMiner2 is an on-line software for mining scientific collaboration net-
works that provides information, recommendations, and visualisations for re-
search groups, papers, conferences, and trends [48]. More recently, Bian et al
[4] present CollaborationViz, an interactive tool for visualising collaborations
among researchers. This tool, based on a force-directed graph layout, has the
capability of displaying different centrality measures, as well as a network time-
line; furthermore, it gives the user the ability to track a researcher’s career,
make drill-downs, and predict links on the network.

Du et al [13] propose a community-detection algorithm for social network
that functions efficiently for large sparse graphs, as those reported by New-
man [33], with the purpose of using community discovery as a tool for social
network analysis. The method allows for overlap in the communities, which
is an essential feature for social networks in particular: a person often asso-
ciates to two or more groups that are not necessarily subgroups of a larger
structure but rather separate communities (consider for example work versus
hobby in a general social setting and the diversity of methods and applications
that a scientist may work on during a lifetime for the scientific collaboration
scenario of the present work). However, Du et al [13] also focus only on the co-
authorship upon analysing scientific collaboration networks and do not include
information on article similarity.

An approach that combines information on the edge structure and the
“content” of the vertices, which in our case maps to the similarity of article
titles, is presented by Yang et al [50], although not towards the explicit compu-
tation of communities or topics, but rather in the modelling of link-existence
based on content similarity, permitting characterisations of whether a set of
vertices with specific content and edges among them should be considered to
form a community.

Ramasco et al [43] also work with bipartite collaboration networks, propos-
ing a model that mimics the structure of such networks. Moody [29] studies the
scientific collaboration network (the author-to-author side of out network) —
extracted from co-authorships — of sociologists over more than three decades,
similarly to our present work, but no attempt is made at community discov-
ery; the author concentrates on structural measures. Huang et al [19] report
a similar study but on the computer science community, studying and mod-

2 Available at: http://arnetminer.org.

Local bilateral clustering for bibliographies 7

elling not only static properties of a network snapshot but also discussing the
way in which the collaboration evolves. Also, Perianes-Rodŕıguez et al [40]
present a method for not only detecting research groups, but also describing
and visualising these groups. Using the co-authorship network of a specific
department as a case study, the detection is carried out by means of factor
analysis. With regard to visualisation, a graph-based layout with node sizes
and distinct colours is used to depict the groups found; in contrast with our
method, this visualisation technique does not take time into account. Follow-
ing a similar line, Ye et al [51] analyse and visualise the co-authorship network
of a university. As part of their analysis is community detection over the net-
work, and this is carried out by means of a k-clique algorithm. To perform the
visualisation of a large network, Kruskal’s minimum spanning tree algorithm
is used.

More recently, Liu et al [24] propose a method for creating co-authorship
networks, which aims at providing a more accurate metric for author impor-
tance; this metric, based on PageRank, considers citations over time (newer
papers may not be as cited as old ones, but this does not imply that the former
are less important). Gleiser and Danon [18] study yet another example of a
collaboration network, where “co-authorship” means that two jazz musicians
have recorded together, also reporting findings regarding the distribution of
community sizes. The communities are computed with a global hierarchical
algorithm based on edge betweenness. More recent works include the one by
Larremore et al [22], which uses a bipartite stochastic block model for com-
munity detection in this type of network; this model works directly on the
bipartite graph, not on one-mode projections.

Papadopoulos et al [39] provide a survey on community detection in an-
other type of social network: social media. There instead of coauthoring pub-
lications, the users comment on the activity of other users, and having com-
mented on a same activity can be considered as a collaboration of a kind. We
believe that many of the methods examined by Papadopoulos et al [39] could
be easily adapted for clustering scientific collaboration networks as well and
hope to carry out a computational comparison within future work.

4 Bilateral clustering algorithm

In this section we describe the approach proposed for computing and visu-
alising clusters of authors (research groups) and clusters of articles (research
topics) in bipartite graphs representing bibliographical data. We will first de-
fine the necessary subprocedures.

4.1 Similarity scores

The set similarity of two sets A and B that have empty union and/or in-
tersection is defined to be zero. For other sets, we use the following scoring

8 S.E. Garza, S.E. Schaeffer

function
1

3

(

(2i− u) / (u+ (i− 1)/i+ 1)
)

, (7)

that may take negative values, where i is the cardinality of the intersection
A ∩ B and u is the cardinality of the union A ∪ B. For the text similarity

between two sets of string tokens A and B, we compute how many of the
tokens are in the intersection of the two sets and then remove the intersection
from both sets, and continue to analyse the similarity between A \ (A ∩ B)
and B \ (A ∩ B). If the remaining sets are empty, the text similarity is one.
Denoting by ℓ(S) the total length of the string tokens, S ∈ {A,B}, let

C = arg min
S∈{A,B}

ℓ(S) (8)

and D be the other set. If the smaller of these sets is empty, the similarity is
one (that is, there is no punishment for extra tokens, such as middle names of
authors that sometimes are included and sometimes omitted). For example,
Abraham Benjamin Colt yields a perfect match for Abraham Colt. We then
analyse all pairs in C × D for similarity using the edit distance between the
string tokens. For each c ∈ C, we find a d ∈ D that minimises the edit distance.
We take these minimum edit distances ε, each normalised individually by the
length of the longer string token to obtain a value in [0, 1]. Upon computing
the edit distance, we use addition cost equal to two, elimination cost equal
to one, and replacement cost equal to three, using the standard dynamic-
programming Levenshtein distance. We then calculate the similarity score for
the two sets of string tokens A and B as

ℓ(A ∩B)

min{ℓ(A), ℓ(B)}

(

1−
1

ℓ(C)

∑

c∈C

ε(c)
)

, (9)

with C and D as defined above. This is to accommodate for spelling differences
or errors in the names, such as John versus Jon or Erick versus Eric.

A research topic of its own right is how to distinguish between distinct
authors who have the same or a similar name [49]. Heuristics and probabilistic
models based on the similarity of the sets of coauthors and/or the keywords of
the manuscript can be applied; if two authors of the same name work with the
same people on the same topics, it is likely to be just one person, whereas if
the topics and the coauthors differ, either the person has changed fields (which
is entirely possible) or they are different people. Also self-citation frequency
could be an indication — if we know that person A authored manuscript X,
and then a person B of a similar name cites X, then B is likely to be A. We
leave such filters to future work.

Existing online tools such as ResearchGate (www.researchgate.net) or
the researcher profiles of Google Scholar (scholar.google.com) rely on user
interaction: manuscripts that have author names resembling that of a reg-
istered user are offered listings of these manuscripts for manual revision so
that the user can either confirm or deny authorship. It seems that at least
Google Scholar takes advantage of coauthor information to automatically add

Local bilateral clustering for bibliographies 9

Table 1: Example of format for input data.

A djamal chaabane

A moncef abbas

T optimizing a linear function over an integer efficient set

Y 2006

J european journal of operational research

manuscript to the user profile when authorship is likely. Another (laborious)
option is to compare the writing style if the full text of the manuscript is
available, although automated attribution of authorship often requires long
samples of the authors’ work [9, 47].

4.2 String preprocessing

For cleaning input strings, we force them into lower case and replace by whites-
pace all occurrences of punctuation and HTML tags. We then eliminate any
leading and trailing whitespace. Punctuation is removed and non-ASCII sym-
bols are replaced with an ASCII version. Stemming is done with our imple-
mentation of the Porter stemming algorithm3 [41], re-implemented simply to
tweak it for the multiple languages contained in the input data.

We maintain a multilingual list of stop words consisting of articles (such as
a, an, the, una, el, la), prepositions (such as from, auf, von, de), titles, prefixes
and suffixes typical to names of persons (such as Dr., Jr.), abbreviations of
associations (such as ACM, SIAM, IEEE), and frequent words that contribute
little to the semantics (such as review, research, new, results, journal, letters)
— our experiments revealed that words like problem and algorithm should be
omitted in future work. Words whose plural or singular form is a stop word
are considered stop words.

4.3 Graph construction

We extract relevant information from a bibliographical repository; namely
paper titles and authors. Journal names and years of publication are extracted
for visualisation purposes. The format used is presented in Table 1. The author-
name tokens are not stemmed, whereas journal names and article titles are.
Any occurrences of stop words are eliminated. For each author, we store the
name as an unordered set of strings. We associate to each author a set of
articles. For each article, we store its set of authors, the title as a set of string
tokens, the journal name as a set of string tokens, as well as the month and
year of publication, where available. We store for each stemmed string also its
original version for labelling purposes, whereas the stemmed one is employed
in similarity computations.

Having parsed the input, we search for duplicates. First we compare all the
author pairs to examine whether two objects are likely to refer to the same

3 Available at http://tartarus.org/martin/PorterStemmer/.

10 S.E. Garza, S.E. Schaeffer

person, which is time consuming (quadratic time complexity). We compute the
text similarity between the set of name tokens for two authors. If it exceeds
a merge-threshold parameter (we used 0.6 in our experiments), the sets of
the name tokens are merged and one of the author objects is replaced by
the other one in all the articles associated to the replaced one, and then the
author object is added to a removal list. If the similarity is not above the merge
threshold, but it is above a storage-threshold parameter (we use 0.4), we store
the similarity in a hash table, using the pair of author objects as a key. The
authors marked for removal are eliminated and the process is repeated until
no further elimination occurs; the sets of name tokens of some authors have
changed by the merges (for example, A. Benjamin Colt and Abraham B. Colt

merge into A. B. Abraham Benjamin Colt), for which new pairs could now
exceed one or both of the thresholds.

We then search for duplicate articles in the same fashion; it is not at all un-
common for the same publication to appear multiple times in bibliographical
data with minor differences for example in journal name spelling (due to ab-
breviations) or in the title (due to typos or shortening). We use a stricter merge
threshold (set to 0.8) and a looser storage threshold (set to 0.3) because we
wish to associate articles that are not replicas but thematically related using
the similarity of their titles in addition to co-authorship data. The remaining
author and article objects form the vertex set of the bipartite graph; we will
refer to these vertices simply as “articles” and “authors” although the prepro-
cessing has altered their contents. An author is connected to an article if and
only if that author is among the set of authors of that article.

4.4 Clustering

Clusters are computed starting with either an author vertex or an article
vertex, traversing the author-to-author and article-to-article edge sets obtained
of the two projections of the bipartite graph to determine which other vertices
of the same kind should be included in that cluster. After each vertex has been
assigned a cluster, the weights of the edges of each projection are adjusted
according to the resulting clustering of the other projection.

The cluster creation is performed by local search. Initially, all clusters are
set as undefined. To compute a cluster C, we begin with a seed vertex s ∈ V
and initially set C = {s} and apply simulated annealing [21], a meta-heuristic
that mimics the cooling of metal. We begin with an initial temperature T = 10
and cool on each iteration the current temperature t with a cooling factor

c = 0.95; these values could be varied as parameters, but we leave that to
future work. The ordering of the seed vertices during an iteration is a random
permutation. If a symmetric clustering is requested, all vertices in a computed
cluster are marked as assigned and will not be used again as seeds; for an
asymmetric clustering where a cluster of a seed vertex may contain vertices
that do not include that seed in their corresponding clusters, all vertices are
used as seeds one by one.

Local bilateral clustering for bibliographies 11

The local search has two operations: growth (inclusion of an additional ver-
tex in the cluster being computed) and reduction (the exclusion of a presently
included vertex). To pick a step, we construct a candidate set consisting of all
vertices presently included in the cluster, all neighbours of presently included
vertices as well as vertices with a non-zero similarity to a presently included
vertex. Then, one candidate is chosen uniformly at random. If it does not yet
belong to the cluster and has not yet been fixed to some other cluster4, it is
included in the cluster (a growth step). If it does belong to the present cluster,
it is excluded (a reduction step), with two exceptions: firstly, if the cluster
contains a single vertex and the reduction mode is activated, the procedure
exits with a singleton cluster, and secondly, when the “keep mode” is set, the
seed vertex may never be removed from the cluster.

The fitness of the modified cluster is now evaluated. Namely, ∀v ∈ C, ∀u ∈
Γ (v), we query the similarity s(v, u) and average it with the edge weight5,
denoted by w(v, u). If u ∈ C, we sum this to the internal degree di; otherwise
we sum it to the external degree de. After this, we divide di by two; this is to
overcome having summed all internal contributions twice. The internal density
is then computed by normalising: δi = 2di/(|C|(|C| − 1)). The relative density

is computed as δr = di/(di + de). The fitness function is then computed as
f = δiδr. All singleton clusters are defined to have fitness zero.

If the fitness computed for a cluster candidate improves upon the present
fitness, the modified cluster is accepted. If it improves upon the best clus-

ter seen thus far for the given seed vertex, the cluster and its fitness are
stored. If there is no improvement, the modification is accepted with prob-
ability p = exp(fc − fm)/t where fc is the fitness of the cluster before the
modification, fm is the fitness of the modified cluster, and t is the tempera-
ture (as in simulated annealing). If the modification was rejected, the cluster
is restored to its previous state. Upon rejection, a stall counter k is increased.
When the counter reaches km (we use km = 10), the procedure is stopped;
upon obtaining an improvement, the counter is reset to k = 0. After each
iteration, we switch mode with probability pm = k/km. The procedure always
starts in growth mode.

A total of R restarts of the procedure is made (we set R = 10). At the end,
the cluster that yielded the best fitness is returned as the result. All vertices in
the produced cluster C are marked to have that cluster as their cluster for that
iteration. When computing symmetrical clusters, only one iteration is done as
nothing changes from the first iteration to the second. For each cluster, upon
the postprocessing phase we compute a penalty: each missing internal edge
provokes a unit penalty, as well as each external edge connecting the cluster
to the rest of the graph. The total number of penalty units is then normalised
by the total vertex count.

4 In the symmetric mode, once a cluster is computed, the included vertices are no longer
available for inclusion in future cluster computations.

5 The weight of an edge w(v, u) is computed as the multiplicity of that edge; for purposes
of the clustering phase, the edges are treated as directed and the weight is normalised by
the degree of vertex v, making the directed edge weight asymmetric.

12 S.E. Garza, S.E. Schaeffer

For an asymmetric clustering, we first check on each iteration whether a
cluster C(b) for b has been defined a ∈ C(b). If so, we amplify the current
similarity score, multiplying it by an amplification factor (set to 1.2 in our
experiments). On the contrary, if the cluster exists but a is not included in it,
we punish the score, multiplying it with a dampening constant (set to 0.9 in
our experiments). We then do the same for C(a) to check whether b ∈ C(a).
This is repeated on each iteration to reward symmetrical assignment and thus
filter the clusters; when using the symmetrical clustering mode, no iteration is
needed as nothing will change in the graph structure during an iteration. The
iteration stops when either the penalty gets below a threshold for the first
time or the difference in the penalties of two subsequent iterations is lower
than this threshold.

When outputting the cluster information, we set a threshold on the clus-
ter order to withhold the printout of very small clusters. For each outputted
clusters, a drawing of the subgraph induced by the cluster is produced. Upon
outputting an article cluster, we output the words in the title, without stem-
ming, excluding stopwords, and the year in which the article was published.
The purpose of this is to include in the visualisation a tag cloud for each ar-
ticle cluster, reflecting the relative frequencies of the title terms as well as the
distribution of these mentions over time.

4.5 Visualisation

Our visualisation framework aims to aid the understanding of the discovered
clusters on two levels: structural and semantic. While the former is concerned
with how the cluster is connected, the latter highlights aspects such as ver-
tex importance and recency; at the semantic level, moreover, visualisations
for author and article clusters differ from each other. The three visualisation
types are based on a spring-force layout algorithm for drawing graphs, which
relies on physics; repulsive forces are generated for non-adjacent or weakly
tied vertices and attractive forces are generated for the opposite case [17]. Our
implementation of the spring layout algorithm is based on the code published
by Bader6. Our modifications include weighted graph processing, tag cloud
generation, and colour-gradient generation. Fig. 3 shows visualisations at the
structural and semantic levels for two related clusters. Because visualisations
at the structural level are a straightforward result of applying the layout al-
gorithm, we focus on describing the other two in more detail.

In author-cluster visualisations, importance, recency, and tightness in re-
lationships are respectively represented with vertex (circle) size, vertex colour
brightness, and edge length and width. Figure 3b illustrates some examples
(actual clusters; it can be observed that words such as “algorithm” and “prob-
lem” are uninformative and should be pruned in the preprocessing phase).

6 Available at http://www.mathiasbader.de/studium/bioinformatics/.

Local bilateral clustering for bibliographies 13

(a)

golbreich_christine songmao_zhang

philip_bernstein

(b)

planar

chain

computing

dimensional

network

area
distributed

two

application

location
largest

optimal

channel

routing

multiple

assignment
wide

subdivision

algorithm

rectangle

maximum

multicast

empty

time

problem

(c)

Fig. 3: Examples of cluster visualisations. In (a), the seed of the cluster is
shown in black. For (b) and (c), colours depict recency (the darker the newer).

Vertex size is determined using PageRank [6]; the drawn circle is proportional
to the obtained score. Colour brightness, on the other hand, is determined by
categorising authors as active (fair brightness), inactive (dull colour), or new
(bright colour) with a set of rules. These rules are based on the recency of the
author’s first and last articles; an article, in turn, is considered as recent when
the difference between its publication year and a base year surpasses a given
threshold. The base year may be the current year or the last year recorded
in the bibliographic repository if treating with a static snapshot. Edge length
and width are, finally, determined with the layout algorithm. Highly related
vertices appear, in consequence, close to each other.

The article-cluster visualisation consists of a semantic tag cloud similar
in spirit to Clark’s Word Clouds7. We considered the use of tag clouds for
their rapidly increasing popularity in Web communities [5] and their intrinsic
nature for intuitively describing topics. To create a semantic tag cloud (or
“topic cloud”), article titles are broken down into sets of keywords, and the n
most frequent words are chosen (we consider n = 30 to be suitable value for
this context); note that frequency is proportional to font size in tag clouds. The
graph cluster is then converted into a word co-occurrence graph in which a pair
of words shares an edge (co-occurs) if these are found on the same article title
or on the titles of adjacent articles in the graph cluster. The layout algorithm
thus produces a cloud in which highly co-occurring words are close to each
other — a placement that is different from the alphabetic or aesthetic8 ones
conventionally used.

A colour fringe is created for each word by obtaining the publication years
of the related articles, sorting the years in non-decreasing order, and assigning
a part of the fringe to each year; a colour intensity is given to each part
according to the recency of the year (the recency is calculated using a base
year). A fringe with a solid bright colour indicates that the concept represented

7 Available at http://neoformix.com/2008/ClusteredWordClouds.html.
8 For example, the Wordle tool (http://www.wordle.net).

14 S.E. Garza, S.E. Schaeffer

Table 2: Properties of the bipartite graph generated from the DBLP repository.

Vertices (n) Edges (m) Density (δ)
Bipartite graph 1 million 1.3 million 0.3×10−5

Article projection ≈ 560,000 8.8 million 5.6×10−5

Author projection ≈ 450,000 1.2 million 1.2×10−5

by a keyword has been recently used (new), whereas a fringe with a solid
opaque or greyish colour indicates the opposite (old or not active); a fringe
with a colour gradient (ranging from opaque to bright) indicates that a concept
has been used throughout time (active).

5 Experimental evaluation

In order to evaluate the quality of the results and the computational feasibility
of the proposed approach, we present visualisations and statistics to demon-
strate functionality and performance. In particular, we discuss a case study
on scientific collaboration graphs that was done with the DBLP bibliogra-
phy repository9, which is a well-known collection of valuable computer science
publications, such as articles, thesis, proceedings, and books. Our extract of
the DBLP bibliography repository focused on article publications, obtained
from the available XML file (2010 version). For each article, author names,
title, journal, and year of publication were collected. From the bipartite graph
obtained, the corresponding author and article projections were calculated as
weighted graphs using Eq. (7) to compute edge weights; Table 2 briefly char-
acterises these graphs.

Subgraphs of different orders were then obtained via breadth-first search
(BFS) graph traversal starting at a random seed vertex, S = {v} and then
replacing S by S ∪ {∪w∈SΓ (w)}, adding the vertices one at a time, (that is,
including direct neighbours of the previously included vertices), repeating this
until the desired order is reached. The vertex set thusly obtained is then used
to induce a subgraph; this is done to preserve local graph structure as much
as possible within the sampled subgraph. Hence, if the BFS parameter β = k
and the random seed vertex is v ∈ S, then for all vertices w ∈ S

dv,w ≤ k. (10)

The BFS was performed on one of the projections and then extended to the
other side of the bipartite graph as follows: when using BFS on articles, we
included all the authors of the articles in S and all edges induced by their
inclusion, and vice versa. As shown in Fig. 4a, the number of articles extracted
scales more or less linearly with the BFS parameter β (note that the horizontal
axis has logarithmic scale). Fig. 4b shows that the maximum vertex degree in
the preprocessed graphs behaves slightly sub-linearly to the BFS parameter.

9 Available at http://dblp.uni-trier.de/ in XML format.

Local bilateral clustering for bibliographies 15

 0

 10000

 20000

 30000

 40000

 256 512 1024 2048 4096

N
um

be
r

of
 a

rt
ic

le
s

ex
tr

ac
te

d

BFS limit parameter

(a) The average and std.dev. of the num-
ber of articles in the subgraphs using the
number of authors as a BFS limit β.

 50

 100

 150

 200

 250

 300

 256 512 1024 2048 4096

M
ax

im
um

 d
eg

re
e

Graph order

(b) The average and standard deviation
of the maximum vertex degree of the sub-
graphs in terms of the BFS limit β.

Fig. 4: Degrees according to BFS limit parameters.

 0

 500

 1000

 1500

 2000

 256 512 1024 2048 4096

Lo
ad

 ti
m

e
(m

in
.)

BFS limit parameter

Articles
Authors

(a) Preprocessing time

 0

 200

 400

 600

 256 512 1024 2048 4096

of

 c
lu

st
er

s

BFS limit parameter

Articles
Authors

(b) Clusters obtained

Fig. 5: Preprocessing time and the number of stored clusters.

The clustering begins with loading the preprocessed graph; the computa-
tional effort required is (sub-)linearly proportional to the order of the bipartite
graph, as shown in Fig. 5a (horizontal axis is drawn with logarithmic scale).
The figure shows the load time of the preprocessed data for each of the BFS-
extracted data sets. The BFS runs parametrised by authors were only analysed
for the lowest parameter value (i.e., 256) due to the order explosion introduced
by including hub authors. We only stored clusters above an order threshold,
set to four in our experiments; all the following results are computed on those
clusters. Fig. 5b shows the number of article and author clusters, average and
standard deviation, over the instances extracted by article-limited BFS. The
computational effort in the clustering itself is also roughly linearly propor-
tional to the number of vertices present in the database extract, as is shown
in Fig. 6. Again the author-based projections turned out to be impractically
slow due to the presence of author hubs.

We plot the time of computation against the number of vertices in the
projection of the seed vertex, in order to explore a relationship with the graph
order and the computation time; Fig. 7a illustrates this, averaged over each
individual projection order. Article clusters show no clear dependence of the
projection order in their computation times, whereas the computation time
of the author clusters reflects a quadratic dependence (note that the horizon-

16 S.E. Garza, S.E. Schaeffer

-200

-100

 0

 100

 200

 300

 400

 500

 1 2 3 4 5 6

T
ot

al
 c

om
pu

ta
tio

n
tim

e
(in

 m
in

ut
es

)

Iteration (until a stopping condition is met)

Authors 256
Articles 256
Articles 512
Articles 1,024
Articles 2,048
Articles 4,096

Fig. 6: The computation time for the clustering of the entire input graph
(computing a cluster for each vertex in each iteration, asymmetrically) in
minutes, average and standard deviation shown, for the clustered data sets.

 0

 2

 4

 256 512 1024 2048 4096

T
im

e
in

 s
ec

.

Number of vertices in the projection

Article clusters

 0

 0.3

 0.6

 0.9

 128 256 512 1024 2048 4096

Number of vertices in the projection

Author clusters

(a) Time vs. graph order for the two projections

 0

 1

 2

 3

 4

 4 5 6 7 8 9 10 11

C
om

p.
 ti

m
e

in
 s

ec
.

Cluster order

(b) Time vs. cluster order over all clusters

 0.8

 0.9

 1

 1 2 3 4 5 6

R
el

. m
od

ul
ar

ity

Iteration

Articles
Authors

(c) Relative modularity

Fig. 7: Performance and quality measures for the obtained clustering.

tal axis has logarithmic scale). The computational effort to compute a single
cluster depends directly on the order of the resulting cluster, as can be seen in
Fig. 7b that plots the time in seconds that it took to compute a single cluster
versus the order of the resulting cluster.

Modularity is a popular measure for the presence of a community structure
[37], shown to emerge among other situations when a network attempts to
synchronise [1]. It can be computed by calculating the fraction of inter-cluster

Local bilateral clustering for bibliographies 17

edges of all the edges in the graph and then subtracting the fraction of edges
that would fall within the clusters if the same amount of edges were placed
uniformly at random among the vertices of the graph. We examine the sta-
bility of our produced clusters as the algorithm advances by computing the
modularity at each iteration and then normalising this by the maximum value
achieved. The results are shown in Fig. 7c and there is no significant variation;
typically a total of six iterations were executed and the maximum modularity
was reached mostly at the fifth iteration, although some peaked on the first
iteration.

We searched existing literature for a similar method in order to compare
our results with other approaches and the closest match was Lp&Brim [2, 25],
for which an implementation is provided at https://github.com/tpoisot/
biweb. It works with bipartite input graphs, expressed as adjacency matrices
(non-square, as the columns correspond to one side of the bipartite graph
and the rows to the other), so we first converted our BFS-based database
extracts into the specified input format. The file size grew over 21 times as
large as the raw file on average (the median being five times the original,
some requiring several gigabytes). Upon observing this, we switched to a more
powerful computer with double the RAM and a faster processor, as the one
used to run our own method would take too long with these files.

For β ≥ 1, 024 a single execution of Lp&Brim on an author-based BFS ex-
tract with β = 1, 024 took nearly six hours and with β = 512 a half an hour to
complete the global clustering for a single run of Lp&Brim using 30 iterations,
which unfortunately produced rather different clusterings on every execution.
Hence we only experiment on the input data for β = 256, only on the article-
originated database extracts (in order to avoid the very large graphs resulting
from hub authors). We allowed 500 iterations to Lp&Brim to produce a more
stable clustering (as in the example run provided in the code repository). We
could not work on all 32 of the inputs of this group, as we experienced an is-
sue with the implementation from https://github.com/tpoisot/biweb that
in some input graphs created clusters for “phantom vertices” that were not
present in the bipartite input given to the algorithm and did not appear in the
vertex list reported by the implementation, although no error was reported by
the implementation at any time. We discarded all those as we cannot compare
clusters when there are unknown additional vertices present; we attempted to
circumvent the issue running the program multiple times and with different
iteration counts with little luck.

The structural comparison is not entirely straightforward as our clusters
are composed of either authors or articles, whereas theirs may freely combine
the two types of vertices. Also, our clusterings are asymmetric whereas theirs
are not. Hence we examined the agreement between the two methods in terms
of whether or not two vertices are placed in the same cluster together. It is
important to recall that Lp&Brim produces a global clustering of the entire
bipartite graph, consisting of both author and article vertices, whereas our
asymmetric method produces a cluster for each seed vertex and only among
the vertices of the same kind (author or article).

18 S.E. Garza, S.E. Schaeffer

 0

 20

 40

 60

 80

Baseline Observed

A
gr

ee
m

en
t (

%
)

 0

 10

 20

 30

Baseline 1-way Baseline 2-way Baseline 1&2-way
 0

 2

 4

 6

Proposed LP&BRIM

R
un

tim
e

pe
r

cl
us

te
r

(s
ec

)

Fig. 8: Box-whiskers plots of the comparative study: agreement of Lp&Brim

to our proposed method (left and centre) in terms versus the agreement of
our proposed method to the existing method of Lp&Brim together with the
runtime per cluster in seconds for the two methods (right).

First, for each pair of vertices that are placed in the same cluster in our
clustering, we check whether or not they are placed in a cluster together also
by Lp&Brim. Figure 8 shows a box-whiskers plot indicating the minimum
and maximum values (whiskers) together with the quantiles of 25 and 75 %
(box) and the median (the line inside the box).

Then, to carry out a comparison vice versa, we counted for each pair of
vertices {v, w} of the same type (author or article) that was clustered together
by Lp&Brim whether also our method included that relation in the resulting
clustering. Note that there are three possible outcomes: either v belongs to
the cluster of w while also w includes v in its cluster (a two-way match), only
one of them considers the other a member of their cluster (one-way match),
or neither considers the other as a cluster member (no match).

Figure 8 reports the results of this comparison as well as boxplots of the
runtimes per produced cluster of the two methods for the 15 input graphs
that presented no phantom vertices under Lp&Brim (we normalise the time
with the number of clusters as our method is asymmetric and uses each vertex
as seed once, whereas theirs is global and hence computes only one set of
clusters). The baselines in Figure 8 are computed by creating partitions at
random with the cluster orders of the two methods for each input graph and
computing the agreement among those, and averaged over 100 repetitions.
The process as such produces a baseline for the comparison where we examine
how many of the pairs that were grouped together in our clustering were also
groups together in the clustering of Lp&Brim, whereas when comparing an
asymmetric clustering to a global one, the latter is still a partition while the
former are subsets with possibly repeated content.

The level of agreement is clearly superior to that of a random assignment
and indicates the two methods produce clusterings that are related to one
another. In particular, as most of the vertices that were clustered together
by our method were also clustered together by Lp&Brim but our method

Local bilateral clustering for bibliographies 19

clustered together less frequently those that were put in the same cluster by
Lp&Brim. This indicates that our clusters seem to be subsets of theirs, as
can be expected, as our clusters are asymmetric whereas their clustering is
symmetrical, and also as our clusters are formed by either authors or articles
and their clusters combine the two.

On average the computed clusterings of Lp&Brim have modularity around
0.7, computed as a special case redefined for bipartite graphs as the edges con-
necting vertices on the same side of the graph cannot exist; our method does
not require this as the produced clusters are not bipartite. As our clustering
is not a global one, we cannot compute a modularity value as such that could
be compared to that of Lp&Brim, even if the two graphs admitted the same
formulation of modularity (their clusters reside in a bipartite graph, encom-
passing vertices from both sides, whereas ours consist in vertices on either one
side or the other, with the projected edge set, and hence the two graphs are
quite different even though they represent the same data set). We hope to find
an implementation for a method that better corresponds to ours to be able to
carry out a more detailed comparison as future work; a promising candidate
is a recent work of Ma et al [27].

5.1 Qualitative visualisations

In this section we provide several cluster visualisations that depict the output
of the proposed algorithm; we analyse these visualisations to show and discuss
outstanding patterns in the discovered clusters. Results are presented for three
types of analysis: topological, iterational, and textual.

5.1.1 Cluster topology analysis

A sample of 1, 000 clusters of different types, projections, and collection sizes
was randomly chosen by means of systematic sampling10; visualisations at the
structural level were generated for these clusters (see Section 4.5). The in-
spection of these visualisations led to the identification of different structures
or topologies with varying degrees of robustness and transitivity; examples of
these topologies are presented in Fig. 9. The first category of the topologies
concerns cliques (Figs. 9a and 9e). These are well-known “closed” structures
that typically represent communities; not surprisingly, the majority of the clus-
ters in the sample fall into this category (≈ 80%). Because cliques are maximal
complete subgraphs by definition, all members of the cluster are adjacent to
each other and all relationships are transitive; consequently, if one member
is eliminated, the rest still relate to each other and the group continues to
be strong. In a scientific collaboration context, an author clique represents a
well-formed research group where individuals have all collaborated with one
another. Article cliques, conversely, represent papers which all share authors

10 In a systematic sample, each element is chosen after k steps, where k results from
dividing the total number of elements by the desired sample size.

20 S.E. Garza, S.E. Schaeffer

(a) Clique (b) Multicluster (c) Bottleneck (d) Star (e) Tail

Fig. 9: Cluster topologies.

with one another. Also, a high presence of triangles (the smallest cliques pos-
sible) was noticeable in the sample (35% for authors, 15% for articles); as the
minimum accepted cluster order was four, these triangles had “tails” attached.

The second topological category consists of structures in which two or
more cliques are bond together, e.g. two triangles (see Fig. 9b for another
example); we refer to this structure as “multiclique” or “multicluster”. Multi-
clusters could be seen as separate communities with several vertices in common
or even as overlapping clusters. Regarding robustness, if the borderline ver-
tices are eliminated, the cluster gets disconnected; relationships are transitive
within each individual clique, but non-borderline vertices of different cliques
clearly have no transitive relationships among them. For author clusters, these
non-borderline vertices stand for authors who have not collaborated with each
other; for article clusters, they stand for papers that have no authors in com-
mon. Semantically, author multiclusters could represent two or more groups
that share collaborators, groups with fissions, or groups where some mem-
bers work on several research areas at the same time. Multiclusters with three
or more cliques potentially represent complex research groups and the topics
derived from such groups.

Our third topological category is given by “bottlenecks”, i.e. multiclusters
that have only one borderline vertex (see Figs. 9c); if this vertex were removed,
the cluster would be split into two components. Because bottlenecks are a
special case of multiclusters, the properties and semantics of the latter can still
be applied. Bottlenecks can be considered, nevertheless, as weaker groups.

The last category is given by stars (Figure 9d). These are clusters held
by a single vertex; if this were removed, the rest of the vertices would be-
come isolated. Consequently, stars are the least robust structures, and have
no transitivity. In a scientific collaboration context, the research group exists
because of an individual interacting with the rest; e.g. consider a group where
the thesis adviser is the centre of the star and the others are his students. For
article clusters, the centre of the star is a paper that shares authors with the
rest, but these others have no common authors; seen from another point of
view, the centre of the star contains at least one author from each of the rest
of the papers. It is interesting to note that stars are more present in author
clusters (2% vs. 15% in the sample); this could be due to the social nature of
author projections.

In general, cliques were by far the most frequent category in the sample.
Similar results hold when organising the sample by projection or collection size.

Local bilateral clustering for bibliographies 21

Let us note that the subdivision into topologies is not only a finding by itself
but also allows to generate a coarser level of granularity for other analyses.
Approximately 30% of the clusters had tails or “satellites” that seem to hang
from them, i.e. vertices connected to the cluster by a single edge. Such vertices
could either be adjacent to the cluster or lie in a path that leads to it (tails
of tails). In the case of stars, we only considered as tails the latter vertices.
Tails usually originate when their presence increases the fitness value of the
cluster or when seeds are kept. For author clusters, tails represent authors
who — directly or indirectly — collaborate with one member of the research
group. This case could be given by a new author who begins to integrate with
the group or is not very gregarious, or an external collaborator of the group.
For article clusters, the interpretation is symmetrical: tails are papers that
have been coauthored by a member of the group and an external collaborator
or by external collaborators (tails of tails). With respect to the sample, 20%
of the article clusters contained tails, while this percentage doubled in author
clusters; greatest tail length, in addition, was of three and was found within the
author clusters as well. This behaviour could be due to the proper dynamics
of a social group.

To analyse how groups change throughout the asymmetric clustering pro-
cedure, a systematic sample of 200 cluster iterations was gathered (≈ 800 clus-
ters in total). Fig. 10 shows several examples of these cluster iterations. The
first analysed aspect was topology shifting; this provides a perspective of how
drastic the changes in the clusters are — both between iterations and between
the first and last iterations only. Regarding the former, around 35% of the
clusters changed from one topology category to another (e.g. star to clique) in
some iteration; regarding the latter, approximately 30% of the clusters ended
with a category that was different from the initial. While both article and
author clusters showed similar percentages in these changes, author clusters
slightly tended to shift to less robust categories in the final iterations (e.g.
clique to star, clique to bottleneck, bottleneck to star, etc.). Article clusters
presented the opposite behaviour. Interestingly, there were clusters that con-
sistently preserved their size, order, and topology throughout iterations11; we
refer to this phenomenon as the presence of a dominant structure. While the
percentage of these structures is low in article cluster iterations (5%), author
cluster iterations present more dominant structures (20%).

11 Only iterations where the cluster order was above the threshold were considered.

22 S.E. Garza, S.E. Schaeffer

(a) C1 : Iteration 1 (b) C2 : Iteration 1 (c) C3 : Iteration 2

(d) C1 : Iteration 2 (e) C2 : Iteration 2 (f) C3 : Iteration 4

Fig. 10: Iterations for different clusters, which are labelled as C1, C2, and
C3 for simplicity (seeds coloured in black). The left cluster depicts significant
changes, while the middle one shows mild changes (note the addition and
removal of tails), and the cluster on the right maintains structure.

5.1.2 Textual analysis

To assess the thematic cohesion of article clusters, a rough analysis was carried
out over the titles of a small sample containing 60 clusters — 30 cliques and
30 stars. For equity, these samples included clusters with four or five elements
only (the average title length was of six words in both cases). We considered a
cluster as cohesive according to repeated words (articles talk about the same
or similar topics). Stemming and lemmatisation were carried out on the text
to group those words with the same root or base.

Results were considerably similar with both samples. From the clusters,
84% contained repeated words (80% for stars, 87% for cliques). The maximum
word frequency in both cases was of four (all titles contain the word); three
documents (two for cliques and one for stars) achieved this frequency. The
average word frequency was of 1.08 for stars and 1.14 for cliques. While cliques,
in general, seemed to be more cohesive than stars, the differences are still not
highly significant. In that sense, it seems appropriate to recall that every article
cluster represents a research topic. The cohesion of these clusters is, therefore,
primarily given by the sharing of common authors and not a common thematic
per sé; the latter — more than holding the clusters together — is a result of
the research groups working on the same knowledge area. In that sense, a less
robust cluster is not necessarily a less cohesive cluster in terms of topicality.
Since other patterns related to text were not detected in the present work, a
more comprehensive analysis on this aspect is left for future work.

Local bilateral clustering for bibliographies 23

6 Conclusions

We have proposed an algorithm for clustering scientific collaboration networks.
The algorithm is based on local graph clustering that functions on both sides of
a bipartite input graph in an asymmetric fashion, strengthening or weakening
connections according to whether vertices are found together on the same
or different clusters. This permits to maximise cohesion by the the gradual
refinement of the resulting clusters. We also presented visualisations for the
obtained clusters.

As future work, we consider improvements on the clustering algorithm, in-
cluding the introduction of another objective function to assess if an output
should actually be considered as a cluster (community) or not. This would
be specially useful in scenarios where there are no natural clusters. The algo-
rithm associated to this objective function could be supervised (i.e., perform
a supervised classification). We plan to provide an actual online implementa-
tion with relaxed recalculation of clusters (upon the insertion of new related
data) that relies on a database of the graph structure; presently the graph
is loaded entirely in main memory that severely limits the scalability of the
current implementation. We plan to study the convergence with such an im-
plementation as the computation times can be reduced. We are also curious
of analysing articles through a tripartite graph, where the publication forum
(journal, congress proceeding series, etc.) is a third set of vertices. We also wish
to introduce auto-adaptive parameter adjustment and stopping conditions for
higher robustness.

Acknowledgements The first author was supported by SEP-PROMEP grant number
103.5/12/7884. We thank the anonymous reviewers for their useful suggestions that helped
improve the manuscript.

References

1. Avalos-Gaytán V, Almendral JA, Papo D, Schaeffer SE, Boccaletti S
(2012) Assortative and modular networks are shaped by adaptive syn-
chronization processes. PRE 86(1):015,101(R)

2. Barber MJ (2007) Modularity and community detection in bipartite net-
works. Physical Review E 76(6):066,102

3. Batagelj V (2003) Efficient algorithms for citation network analysis. Tech.
Rep. cs/0309023, arXiv.org

4. Bian J, Xie M, Hudson TJ, Eswaran H, Brochhausen M, Hanna J, Hogan
WR (2014) Collaborationviz: Interactive visual exploration of biomedical
research collaboration networks. PloS one 9(11):e111,928, 0

5. Bogárdi-Mészöly Á, Rövid A, Ishikawa H (2013) Topic recommendation
from tag clouds. Bulletin of Netw, Comp, Sys, and Software 2(1):pp–25

6. Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web
search engine. Computer networks and ISDN systems 30(1-7):107–117

24 S.E. Garza, S.E. Schaeffer

7. Catanzaro M, Caldarelli G, Pietronero L (2004) Assortative model for
social networks. PRE 70(3)

8. Catanzaro M, Caldarelli G, Pietronero L (2004) Social network growth
with assortative mixing. Phys A 338(1–2):119–124

9. Clement R, Sharp D (2003) Ngram and Bayesian classification of doc-
uments for topic and authorship. Literary and Linguistic Computing
18(4):423–447

10. Diestel R (2010) Graph Theory, GTM, vol 173, 4th edn. Springer
11. Ding Y, Yan E, Frazho A, Caverlee J (2009) PageRank for ranking authors

in co-citation networks. JASIST 60(11):2229–2243
12. Dorogovtsev S, Mendes J (2002) Evolution of Networks: From Biological

Nets to the Internet and WWW. Clarendon Press, Oxford, UK
13. Du N, Wu B, Pei X, Wang B, Xu L (2007) Community detection in large-

scale social networks. In: Proc. of WebKDD & SNA-KDD, ACM, New
York, NY, USA, pp 16–25

14. da F Costa L, Rodrigues F, Travieso G, Boas P (2007) Characterization of
complex networks: A survey of measurements. Adv in Phys 56(1):167–242

15. Flake G, Lawrence S, Giles C (2000) Efficient identification of web com-
munities. In: Proc. of KDD, ACM New York, NY, USA, pp 150–160

16. Fortunato S (2010) Community detection in graphs. Phys Rep 486:75–174
17. Fruchterman T, Reingold E (1991) Graph drawing by force-directed place-

ment. Software: Practice and experience 21(11):1129–1164
18. Gleiser PM, Danon L (2003) Community structure in jazz. Adv in Com-

plex Sys 6(4):563–573
19. Huang J, Zhuang Z, Li J, Giles CL (2008) Collaboration over time: Char-

acterizing and modeling network evolution. In: Proc. of WSDM, ACM,
New York, NY, USA, pp 107–116

20. Jeong H, Néda Z, Barabási A (2003) Measuring preferential attachment
in evolving networks. Europhys Lett 61

21. Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimization by simulated
annealing. Science 220(4598):671–680

22. Larremore DB, Clauset A, Jacobs AZ (2014) Efficiently inferring commu-
nity structure in bipartite networks. CoRR abs/1403.2933:012,805, URL
http://arxiv.org/abs/1403.2933, 9

23. Li M, Fan Y, Chen J, Gao L, Di Z, Wu J (2005) Weighted networks of
scientific communication: The measurement and topological role of weight.
Phys A 350(2–4):643–656

24. Liu J, Li Y, Ruan Z, Fu G, Chen X, Sadiq R, Deng Y (2015) A new method
to construct co-author networks. Physica A: Statistical Mechanics and its
Applications 419:29–39

25. Liu X, Murata T (2009) Community detection in large-scale bipartite net-
works. In: Web Intelligence and Intelligent Agent Technologies, 2009. WI-
IAT’09. IEEE/WIC/ACM International Joint Conferences on, IET, vol 1,
pp 50–57

26. Liu X, Bollen J, Nelson M, Van de Sompel H (2005) Co-authorship
networks in the digital library research community. Inf Proc & Mgmt

Local bilateral clustering for bibliographies 25

41(6):1462–1480
27. Ma T, Rong H, Ying C, Tian Y, Al-Dhelaan A, Al-Rodhaan M (2015) De-

tect structural-connected communities based on bschef in c-dblp. Concur-
rency and Computation: Practice and Experience DOI 10.1002/cpe.3437

28. Milgram S (1967) The small world problem. Psych Today 2:60–67
29. Moody J (2004) The structure of a social science collaboration network:

Disciplinary cohesion from 1963 to 1999. Am Sociol Rev 69(2):213–238
30. Newman M (2001) Clustering and preferential attachment in growing net-

works. PRE 64(2)
31. Newman M (2001) Scientific collaboration networks. I. Network construc-

tion and fundamental results. PRE 64:016,131
32. Newman M (2001) Scientific collaboration networks. II. Shortest paths,

weighted networks, and centrality. PRE 64
33. Newman M (2001) The structure of scientific collaboration networks.

PNAS 98(2)
34. Newman M (2002) Assortative mixing in networks. PRL 89
35. Newman M (2004) Coauthorship networks and patterns of scientific col-

laboration. PNAS 101(Suppl. 1)
36. Newman M (2004) Who is the best connected scientist? A study of scien-

tific coauthorship networks. Complex Networks 650:337–370
37. Newman M (2006) Modularity and community structure in networks.

PNAS 103(23)
38. Newman M (2010) Networks: An introduction. Oxford University Press
39. Papadopoulos S, Kompatsiaris Y, Vakali A, Spyridonos P (2012) Com-

munity detection in social media. Data Mining and Knowledge Discovery
24(3):515–554

40. Perianes-Rodŕıguez A, Olmeda-Gmez C, Moya-Anegn F (2010) Detecting,
identifying and visualizing research groups in co-authorship networks. Sci-
entometrics 82(2):307–319, DOI 10.1007/s11192-009-0040-z, URL http:

//dx.doi.org/10.1007/s11192-009-0040-z

41. Porter M (1980) An algorithm for suffix stripping. Program 14(3):130–137
42. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining

and identifying communities in networks. PNAS 101(9):2658–2663
43. Ramasco J, Dorogovtsev S, Pastor-Satorras R (2004) Self-organization of

collaboration networks. PRE 70(3):036,106
44. Schaeffer S (2007) Graph clustering. CoSRev 1(1):27–64
45. Schaeffer SE (2005) Stochastic local clustering for massive graphs. In:

Advances in knowledge discovery and data mining, Springer, pp 354–360
46. Sozio M, Gionis A (2010) The community-search problem and how to plan

a successful cocktail party. In: Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, ACM,
pp 939–948

47. Stamatatos E (2009) A survey of modern authorship attribution methods.
Journal of the American Society for Information Science and Technology
60(3):538–556

26 S.E. Garza, S.E. Schaeffer

48. Tang J, Zhang J, Yao L, Li J, Zhang L, Su Z (2008) Arnetminer: ex-
traction and mining of academic social networks. In: Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ACM, pp 990–998

49. Tran DH, Takeda H, Kurakawa K, Tran MT (2012) Combining topic model
and co-author network for KAKEN and DBLP linking. In: Intelligent In-
formation and Database Systems, Lecture Notes in Computer Science, vol
7198, Springer, pp 396–404

50. Yang T, Jun R, Chi Y, Zhu S (2009) Combining link and content for
community detection: A discriminative approach. In: Proc. of KDD, ACM,
New York, NY, USA, pp 927–936

51. Ye Q, Wu B, Wang B (2008) Visual analysis of a co-authorship network
and its underlying structure. In: Fuzzy Systems and Knowledge Discovery,
2008. FSKD ’08. Fifth International Conference on, vol 4, pp 689–693,
DOI 10.1109/FSKD.2008.436

52. Zhou S, Cox I, Hansen LK (2009) Second-order assortative mixing in social
networks. Tech. Rep. 0903.0687, arXiv.org

Technical Biographies

Sara Elena Garza Villarreal earned a Ph.D. in Informa-
tion Technologies and Communications with a minor in In-
telligent Systems at the Instituto Tecnológico y de Estudios
Superiores de Monterrey, Mexico, in 2010. She works as a
full-time professor and researcher at Universidad Autónoma
de Nuevo León (Mexico). Her primary research interests
include graph clustering, topic mining, complex network
analysis, data mining, and artificial intelligence in general.

Satu Elisa Schaeffer studied her Master’s and Doctor-
ate in Computer Science and Engineering at Helsinki Uni-
versity of Technology (now Aalto University), in Finland,
from 1996 to 2006. She is Associate Professor at Universi-
dad Autónoma de Nuevo León in Mexico since 2006. Her
field of study was Theoretical Computer Science and her
primary research interests include modelling, analysis, and
structural characterisation of complex systems.

